A New Class of Burst-Correcting Cyclic Codes
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In many DSN communication systems (the GCF, computer-computer data trans-
fer, etc.) transmission errors tend to occur in intermittent bursts. In this article a
new class of burst-error-correcting codes, potentially applicable to DSN systems, is
described. Many of these codes are superior to any previously known.

l. Introduction

A systematic way of constructing burst-correcting cyclic
codes is presented. If the length of the burst and the
length of the codeword are denoted by b and n, respec-
tively, then for b > 30 and b/n<5 percent, these codes
outperform the most efficient burst-correcting codes
known, in most cases. (For the same b and n, the rate of
the suggested code is higher.)

The main advantage of the suggested code lies in the
simple hardware implementation of both encoder and
decoder. The encoder uses a feedback shift register with
a simple structure of feedback connections. The decoder
uses only two end-around shift registers.

Il. Presentation
Theorem

(1) Let g be a prime and let ¢ > p, where p is a posi-
tive integer. The polynomial g(X) = (X? + 1)
(Xr + 1)/(X + 1) generates a cyclic code. The
length of a codeword is g *p.

(2) The code is capable of correcting any error burst of
length p — 1 or less iff p—n(q—p) is prime for n =
0,12, + -+, [p/(q — p)].

(3) Let b denote the length of an error burst.

(a) fb <max(p+ 1,9 — p + 1) the error is
detected.
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(b) ¥ max(p + 1, g — p + 1) < b < q then the
probability of not detecting an error is less than
p . 29—‘1-1.

The proof is given in the Appendix.

Table 1 shows some cases where such a code can be
used. (The efficiency is defined as (2b + 2)/(n — k). The
numerator is the minimum theoretical number of parity
bits needed for correcting a burst of length b or less and
detecting all bursts of length b + 1 and b + 2. The de-
nominator is the actual number of parity bits used. The
efficiency is an important feature of a code. (If a shortened
version of the code is used, the higher the efficiency the
higher the rate is.) These codes are suitable for correcting
long bursts inside relatively long codewords. (If t < b <
u — 1, where t and u are two successive primes, that code
is selected which corrects a burst of lengthu — 1 or less.)

For those cases where b > 30 and b/n < 5 percent,
these codes outperform the known codes in most of the
cases (higher rate and higher efficiency). A list of the
known codes is given in Ref. 1. “These codes and the
codes derived from them by interlacing (interleaving) are

the most efficient single burst error correcting codes
known.”

Table 2 compares the performance of the suggested
code and the known codes for the same values of b and n.
(In order to achieve the specified values of b and n, the
known codes were interleaved. Both codes were shortened
when necessary. Table 2 demonstrates how, in most cases,
the suggested code outperforms slightly the most efficient
codes known. Its main importance lies, however, in the
simplicity of the hardware implementation of both en-
coder and decoder.

The encoder of a cyclic code consists of a shift register
and a feedback loop to which some stages are connected
(via an exclusive OR gate), according to the coefficients
of the generator polynomial. In our case,

g(X) = (X¢ +1) (X* + 1)/(X + 1)
=X+ 1) (Xt + Xr2 4 o0 + 1)
= XQ*'P—l + X(I+P—2 + L) + Xq

4+ Xpl 4 Xp2 b oeee 41
It follows that the encoder consists of a shift register with

g + p — 1 stages from which the first and last p — 1
stages are all connected to the feedback loop.
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After considering the structure of the parity check
matrix H given in the proof of the theorem, it follows
that the decoding operation which is performed by multi-
plying H by the received message, can have a simple
form, which is shown in Fig. 1.
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Fig. 1. The decoder
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The received message is shifted into a buffer, and also
into registers R, and R,, which are a p-stage and a g-stage
register, respectively. After the complete message has
been received, a check is made to determine whether the
content of the registers is “all 0.” If this is the case, no
error has been detected and the received message is
shifted out of the buffer without any correction.

If an error is detected, the content of the last stage of
R, (counting from the right), as well as the last (§ — p +
1) stages of R, are checked as to being “all 0.” At the same
time the contents of the ith stages of R, and R,, 1 < i<
p — 1, are checked for being identical. If either one of the
two checks described fails, the bits stored in the buffer
are shifted out one at a time, while the gate is closed. For
each bit leaving the buffer, both registers are shifted
cyclically by one place (the input is constantly logic 0)
and the checks described are performed for each shift.

When both checks have been satisfied (one check shows
“all 0” input and the other shows identity of the content
of the first p — 1 stages) the gate is opened and the
content of R, is added bit by bit to the bits shifted out of
the buffer and the correction is completed.

The advantage of the described decoder lies in the fact
that it does not use feedback connections at all. On the
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other hand, when implementing the decoder of the known
cyclic codes, some complicated feedback connections are
made according to the coefficients of the generator poly-
nomial,

The theorem considers also the case where ¢ — p + 1
> p + 1, which means that ¢ > 2p. Notice that if p and
q are primes where g > 2p it follows from the theorem
that the code generated by (X? + 1) (X? + 1)/(X + 1) is
capable of correcting any error burst of a length p — 1
or less.

Clarifying the concept of error detection is also worth-
while. An error is detected when the decoder detects the
existence of an error, together with the fact that it is un-
correctable, such that no false attempt is made to correct
the error. Referring to the described decoder, an error is
detected when either one of the two checks performed is
not satisfied by the time the message is shifted completely
out of the buffer.

The following demonstrates the ability of the code for
the case where p = 31 and g = 101:

(1) Any error burst of length 30 or less is corrected.
(2) Any error burst of length 71 or less is detected.

(3) The probability of not detecting an error of a length
between 72 and 100 is less than 10-2¢,

(4) By keeping p = 31 and changing q, it is possible to
achieve almost any desirable error detection capa-

bility.

The theorem states that the condition posed on the
values of p and ¢ is also a necessary condition. It is worth-
while demonstrating why it is not enough to require that
p and g should be prime.

Let X be a set of positive integers which are the loca-
tions of the erroneous bits inside the received message.
Let A and B be the sets of residues of the elements of
X modulo p and gq, respectively. It follows from the struc-
ture of the decoder that by the time the received message
is stored completely in the buffer, the locations of the
1 elements in R, and R, are the elements of A and B,
respectively.

An error burst cannot be corrected uniquely if a set Y,
which is different from X, produces the same residue sets
A and B. Two such sets X and Y can exist although p and ¢q
are primes. For example: p = 11, g = 13.

X ={11,12,14,15,19,20},
A={1348911} ,

Y = {58,59,63,64,66,67}
B = {1,2,6,7,11,12)
The elements in both X and Y are confined to 10 succes-

sive places since the error burst is of length p — 1 or
less.

Reference

1. Lin, S., Introduction to Error Correcting Codes, Prentice-Hall, Inc., Englewood
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Appendix

Proof of the Theorem
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Step 1: Proof of part (1) of the theorem

The greatest common divisor of X* + 1 and 27 + 1 is
X@» 4+ 1 =X + 1. Since X* + 1 and X? + 1 are both
divisors of X%? + 1, the polynomial g(X) = (X* + 1)
(X9 + 1)/(X + 1) is also a divisor of X2 + 1, whichis a
necessary and sufficient condition for g(X) to generate a
cyclic code of length p-q.

Step 2: Finding a parity check matrix
Let us define a polynomial h(X),
h(X) = (X** + 1)/g(X)
= [(Xr + 1) (X + DI/[(X? + 1) (X + D)].

The rows of the parity check matrix H consist of multiples
of h(X) (a polynomial is regarded as the row of a matrix
when its coefficients form the elements of the row). In our
case, p + ¢ — 1 rows should be linearly independent.
(Usually the number of rows of a parity check matrix
equals the number of independent parity checks. How-
ever, if some extra rows which are a linear combination
of the independent ones are added, the obtained matrix
is still a parity check matrix in the sense that a syndrome
S is defined as H X = S where X is the received message.
The syndrome § is the “all 0” vector iff X is a transmitted
codeword.)

Let my(X) = h(X)+Xi+(X? + 1)/(X + 1) = X{(Xer +
D/(X? + 1) = Xi(X@D? 4 X@D? 4 «oo + X2 + 1)
i=01,¢+,p— L

s:(X) = h(X)-Xi(X? + 1)/(X + 1) = Xi(Xer + 1)/
(X2 + 1) = Xi(XPV1 4 X020 4 o004 X0 4 1)
i=0,1,"',q— 1.

Let the first p rows of a matrix H consist of the poly-
nomials m;(X) and let its last ¢ rows consist of the poly-
nomials s;(X). This matrix can be described in a very
simple way. Its first p rows consist of the unity matrix of
order p X p written successively g times. A similar de-
scription applies for the last q rows.

For example, forp = 2,q = 3,

101010
010101
H={1 00100
010010
001001
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The sum of the rows of H is the “all 0” vector, which
means that any particular row equals the sum of all the
other rows. In view of the structure of H it is obvious that
if one row is omitted, the rest ¢+ p — 1 rows are linearly
independent and H is therefore a parity check matrix of
the code.

Step 3: Analyzing the syndrome

Let X be a codeword generated by g(X) and let Y =
X + N be the received message where N is an error burst
of length p — 1 or less. Let E be a vector of length p — 1
whose elements are the error pattern, where its first ele-
ment is 1. (If the burst is of length d < p — 1, the last
p — 1 — d elements of E are 0). Let E, and E, be two
binary vectors of length p and g respectively. The first
p — 1 bits of both vectors equal the vector E, and the
rest of their elements are 0.

Let E, and E,'” denote the vectors obtained from
E, and E, by shifting them cyclically for j places. If the
first erroneous bit of the error burst is in the jth place of
the received message, then in view of the construction of
H, the first p bits of the syndrome are the vector E,” and
its last g bits are the vector E,”’. The error burst cannot
be corrected iff there exists an error burst pattern F which
starts at the kth place of the received message and which
produces the same syndrome, where F =« E or j +# k
(or both).

3.1 F=£E,j= k. Such a case is impossible. (Two differ-
ent error patterns which occur at the same place in the
received message cannot produce the same syndrome.)

32 F = E, j = k. Since the same syndrome is produced
it follows that E,(? = E,® and E,"» = E,®. A vector
can equal a cyclic shift of itself if all its elements equal
each other. Such a case is impossible here since both E,
and E, start with a 1 and end with a 0. Since the length
of E, is prime, the last two equalities are possible iff j — k
is divisible by r+q, where r is a divisor of p. (Generally,
r can also be a product of p, but this is impossible here
since 0 < {, k < p-q.) It follows that p must be factorized.

33 F = E,j== k. The theorem deals with error bursts
of length p — 1 or less. The length of F is therefore p — 1
where F starts with a 1. (If the length of the burst whose.
pattern is represented by F is less than p — 1, the last
elements of F are 0.) Let F, and F, be binary vectors of
length p and g, respectively, both equal in their first
p — 1 places to the vector F. The rest of their elements
are 0. Since the same syndrome is produced by E and F
it follows that E,'? = F,® and E,» = F,®,
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Leti=j — k (mod p) and m = j — k (mod g). It fol-
lows that F, = E,® and F, = E,™. If either i = 0 or
m = 0 it will follow that E = F. Such a case was treated
above. The rest of the proof will show that it is possible
to have F, = E;¥ and F, = E,™ where i, m > 0 iff
p — n (g — p) is factorized for some n,

The vectors E, and F, both start with a 1 and have g —
p + 1 zeroes at the end. In order for F, to be obtained
from E, by a cyclic shift, E, must have somewhere in it
g — p + 1 successive zeroes (which are transferred to its
end by the cyclic shift that produces F,). These zeroes are
followed by a 1 (which is transferred to the beginning of
F.) and therefore cannot be part of the last g — p + 1
zeroes at the end of E,. It follows that E, has in it
q — p + 1successive zeroes confined to the first p places,
which means that E, contains ¢ — p + 1 successive zeroes.

The vectors E,, E,, F, and F, have therefore the follow-
ing form.

E, F,
' E I F, ]
Boo---00 cloo---00lcoo---00 Bloo---00
N — N - N S
g—p qg-—p g—rp q—p

where B and C are two vectors starting with a 1 and
ending with a 0.

Step 4: A general description of the proof

Let D denote an “all 0” vector of length s = ¢ — p.
Let the length of the vectors B and C obtained in the
previous step be denoted by r and ¢, respectively.

Assuming that F, =: E,, steps 5 through 11 of the
proof analyze the value of p for all possible positive values
of i. The various values of i are related to r, s and ¢.

It is shown that for each relation among 4,r,s and ¢ a
certain vector V; has two different structures which can
exist simultaneously iff p — n-s is factorized for some n.

Figure A-1 describes how each step of the proof fol-
lows from the previous one. (The number near each
branch refers to the corresponding step.) Consulting this
drawing might simplify the reading of the proof.
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Fig. A-1. Description of the proof

The vector treated at the starting point is F,. A last
branch in a path (which is terminated by 0 or X for
reasons explained later) corresponds to the structure of
a certain vector V;, and the path which starts with the
starting point and ends with that last branch, shows the
way by which V; is obtained from F,.

The vector whose structure corresponds to a last
branch in a path is denoted by V; if the path which con-
nects the starting point to that branch connects on its
way i branches to branches with a lower index. This
excludes the case where step 11 continues with step 8.1.
(If this connection is the only backwards connection in
the path, the vector treated in the last branch is still V,.)

When a branch is terminated with an X it means that
a contradiction is met and the vector V;, whose structure
corresponds to this branch, cannot exist.

If a branch ending with a 0 corresponds to the struc-
ture of a vector V, whose length is d,, it is proved that
d, — m+s is factorized for some m.

When a branch in Fig. A-1 is connected to a branch
with a lower index, it means that the proof arrives at an
intermediate vector V whose structure is identical to that
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of a vector V’ treated previously, and the proof should
therefore follow the same lines from that step on. (Within
the proof, this reference to a previous step is of the form
“continue with Eq. X.” The equation preceding such a
statement and Eq. X, are of the same form.)

Conclusion 1. It is enough to prove that d, — m-s is fac-
torized for all possible V, in order to prove that d; — m-s
is factorized for all possible V; (m does not have the same
value for all V,, but it is always some integer).

The factorization of d; — m-s is in the sense that V;
consists of a set of subvectors. Of these subvectors m
subvectors equal the vector D and the rest equal a vector
A whose length is at least 2.

While reading the proof and observing the way by
which the possible vectors V, are obtained (a vector V,
is obtained when there is only one branch in the path
which generates V, which is connected to a branch with
a lower index), it is important to notice that if V, consists
of subvectors which are either D or A, so does the vector
V., which corresponds to the same last branch as V. This
means that if d, — m-s is factorized, so is d, — n-*s,
where m and n are positive integers.

The last statement can be extended by induction in the
sense that V;,, and V, can be treated as V, and V,, re-
spectively. It should also be noticed that d, = p.

Conclusion 2. If d; — m-s is factorized for some V;, so is
p—nes.

Conclusion 3 follows from conclusions 1 and 2.

Conclusion 3. It is enough to prove that d, — m-s is
factorized for all possible V,, in order to prove that
p — n-s is factorized for every possible structure of F,
(assuming that F, = E,® forp > i > 0).

Within the proof, the 4 different vectors V, are referred
to as F, (since V, is the same vector treated at the starting
point). However, in view of conclusion 3 it is enough to
prove that p — m-s is factorized for those 4 vectors F,
(p = d,) in order to prove that p — n-s is factorized for
all possible vectors F,, where m and n are some integers.

Remark: In view of Fig. A-1, it might appear as if there
are cases where a path enters an infinite loop and a ter-
minating point is never reached. However, each time the
path goes back to a step with a lower index, a shorter

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32

vector is treated. Since F, (which is the original vector
treated) has a finite length, it is impossible to have an
infinite loop.

(The case where step 11 continues with step 8.1 leaves
the length of the vector unchanged. However, such a
case can happen in one path only once.)

Notation: Throughout the proof, an equation of the type
X = HIJ means that a vector X consists of the vectors H,
I, and ] written successively. For example,

H = (abc), I = (de), ] = (fgh), X = (abcdefgh)
Using this notation, E, = BDC and F, = CDB.
Step 5: Assume F, = E,;V) 0<i<t

E, = BDC,C, where the length of C, is i.

F, = C,BDC,,but F, = C,C.DB. It follows that

C.BDC, = C,C,DB (A-1)

where B, C,, and C, all start with a 1 and end with a 0.
(This statement follows from the fact that each one of the
three vectors either starts or terminates E, or F,.)

Let the length of C, be denoted by u(u = t — ).
Step 6: Assume F, = E,? 0 <i<tu<r
61 i>u

The two arrangements of F, shown in Eq. (A-1) can be
described by the following drawing (Fig. A-2):

t_cz(i)—+—a(r) vi- D(s)
i w | [} f |
e (X9}

!
L) o

Cy(i) D'(s) B'(r)

i q(u)»]

Fig. A-2. The two arrangements of F,

The figures in the brackets denote the length of each
vector. The vectors in the bottom drawing are denoted by
) although they are identical to the corresponding ones
in the upper drawing. According to the drawing it appears
that r > s+wu. This must be the case since it is assumed
that r > u. The vector B’ starts with a 1 which must fall
outside D (which is the “all 0” vector). A vector X whose

length is k = r — (s+u) is therefore obtained.
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The following two equations follow from the drawing

B’ = XDC,
B =YD'X
1t follows that
XDC, = YDX. (A-2)

Three different cases should be observed. These cases are:
Mk<u+sandu<k+s2u>k+s 3 k>
u + s. Any other relation among k, 4 and s involves an
immediate correspondence between the first element of
X or C, and an element in D, which is impossible since X
and C, start with a 1, and D is the “all 0” vector.

It is assumed that such a consideration is well under-
stood and therefore when a similar case occurs later in the
proof it will not be analyzed.

1) k<u+su<k+s

The following drawings are the structures of B’ and B
shown in Fig. A-2.

D(s) { Cylw)

|

[ ol
1 X(k) T

ol

1

D(s) ——sl- X(K)

|
N Ye) 1

L ¥V

It follows that k = u and therefore X = Y = C,. Referring
back to Fig. A-2 we observe: C.Y = C’/C. It follows that
C.C. = C,C,. The last equation is possible only if both
C, and C, consist of a subvector A which repeats itself
(ie., C; = AA +++ A C, = AA -+- A). The vector A
starts with a 1 and ends with a 0, which means that it has
at least two elements. Since F, = C,YDXDC,, it follows
that p — 2s is factorized. (p is the length of F,. After
deleting from it twice the vector D the rest consist of a
repetition of A.)

(2) u>k+s

It is observed in Fig. A-2 that both C, and X terminate
either B’ or B, and they both are preceded by D. Since
u > k + s, it follows that C, is terminated by DX which
means that C, = ZDX.

B’ = XDC, = XDZDX
B = YD’X and therefore Y = XDZ
C, = C!W =ZDXW,C, = WY = WXDZ
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and therefore

ZDXW = WXDZ (A-3)
Four different cases should be considered.

(a) In the two versions of C., the vector D coincides
with jtself.

s s s s
l——w———|-——x i D i z Jl

It follows that WX = XW = Z and therefore W, X and
Z have the form AA -+ + A,

F, = C,YD’XDC, = ZDXWXDZDXDZDX.

It follows that p — 5s is factorized. (After deleting D five
times, the rest is a repetition of A.)

The other three cases for the possible construction of
C, are those where D is completely contained in Z, X or
W. (Any other possibility results in an immediate corre-
spondence between the first element of any of these three
vectors and an element in D.)

(b) D is completely contained in Z.

i~
¥

P S ,

It follows that WXDH = HDXW (both equal Z). Con-
tinue with Eq. (A-3).

-

..

(c) D is completely contained in X.

' z | D—-’<———X————>’<——w
. [) II— i ) ) | j
h—r——} U eV o

Y | ¥

L—w——<—————' x———’l-fo——‘-——z——-l
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It follows that TDU = UDV (both equal X). Continue
with Eq. (A-2).

(d) D is completely contained in W.

Eq. (A-3) states that ZDXW = WXDZ. Suppose that D
in the left side of the equation is contained in W on the
right side. (This assumption is always true for D contained
in W since it holds iff D on the right side of the equation
is contained in W on the left side.) It follows that W has
the form ZDV. Eq. (A-3) has now the form ZDXZDV =
ZDVXDZ. It follows that XZDV = VXDZ. Continue with
Eq. (A-1).

3y k>u+s.

Both C, and X terminate either B’ or B (as shown in
Fig. A-2). It follows that X has the form ZDC,.

B’ = XDC, = ZDC,DC,

B =YD’X = YDZDC,
It follows that ZDC,; = YDZ. Continue with Eq. (A-2).
62 i=u.

Referring to Eq. (A-1), the two arrangements of F, can
be described as follows:

o

D(S)‘“"'Cl(u)ﬂ

l
|

1 I
le—ci +‘C§(i)~4-—0'(s)»;<—__al(r)—4

It follows that C, = C, and therefore C,DX = XDC,.
(Both equal either B or B’.) Continue with Eq. (A-2).

63 i<u.

F, has the following two arrangements.

kcz(i) =]L B(r) Ai D(s)—-I-—C }(v) ——]
|
|

et L
v X

¥ '

L—C"(u).—__—‘C‘Z(i).‘.;D'(S) - B'(r) !
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C/=CW
1 2

B’ = XDC, = XDC,W

B = WC!D'X

It follows that XDC,W = WC,DX. Continue with
Eq. (A-3).

The final conclusion from step 6 is that for 0 < i < ¢
and u < r it is possible to have F, = E,‘¥ only if p — n*s
is factorized for some n.

Step7: Assume F;, = EV 0 <i<tu=r

Since F, = C.BDC, = C,C,DB, where the length of
C. and B is u and r, respectively, it follows that C, = B
and therefore C,C, = C,C,. It follows that C,,C, and B

all have the form AA +++ A and p — s is therefore fac-
torized.

Step 8: Assume F, = E;V 0 <i<tu>r
81 u<r+s+i

The two arrangements of F, are described as follows:

T
0
o
<

o
N
=
U
~

&t
o

—~
=

; =YDX
It follows that C, = YDXT.
C,=XD'B
B =TY

It follows that C, = XDTY and therefore

YDXT = XDTY (A-4)
Three cases are observed now.
(1) X=Y.
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It follows that XT = TX which means that Y, X and T
all have the form AA -+ A F, = C,TYDXD'B’ =
YDXTYDXDTY. It follows that p — 3s is factorized.

2 Y>X

It follows from Eq. (A-4) that Y has the form XDV.
Equation (A-4) therefore has the form

XDVDXT = XDTXDV.
It follows that VDXT = TXDYV. Continue with Eq. (A-3).
3 X>7.

It follows from Eq. (A-4) that X has the form YDV,
Equation (A-4) therefore has the form

YDYDVT = YDVDTY

It follows that YDVT = VDTY. Continue with Eq.
(A-4).

82 u=r+s+i

It follows from Eq. (A-1) that C,DB = C,BD, which
means that DB = BD, which is impossible (1 in B cor-
responds to 0in D).
83 u>r+s+i

The two arrangements of F, are described as follows:

C](U) -

[t —fast) =1 D‘S%
|

<—-w-—||

,E Ciw)

C'z(i)—-‘[oDI)—lﬂ—B‘(r)—-l

It follows that C BDW = WC’D’'B’. (Both equal either
C’ or C..) Continue with Eq. (A-1).

The conclusion drawn from steps 5 to 8 is that for
0 < i < titis possible to have F, = E,¥ only if p — n°s
is factorized for some n.

Step 9: Assume F, = E,© wherei =1
It follows that CBD = CDB, and therefore DB = BD,

which is impossible since D starts with a 0 and B starts
with a 1. The same applied fori = ¢ + s.
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Step 10: Assume F, = E,V fort <i<t+s

E, = BD,D,C where the length of D,C is i.

F, = D,CBD, = CD,D,B, which is impossible since
F, starts once with a 1 and once with a 0.

Step 11: AssumeF, = E, fort + s < i

E, = B,B.DC where the length of B,DC is i.
F, = B,DCB,

F, = CDB,B.. It follows that B,DCB, = CDB,B.. Con-
tinue with Eq. (A-4).

Step 12: Conclusion of the proof of part (2) of the theorem.

It has been shown in step 3.2 and in steps 5 to 11 that if
F, = E,;® for p > i > 0 then p — n*s is factorized for
some n > 0. This means that it is sufficient to require that
p — n-s should be primes for n = 0,1,2, ++* [p/] in
order for the code to be able to correct any error burst of
length p — 1 or less. (For values of n higher than [p/s]
the value of p — n-s is negative.)

On the other hand, for every n, 0 < n < [p/s] it is pos-
sible to find a vector F, such that F, = E;® (p > i > 0)
provided that p — n-sis factorized.

)i I |
1 7
For n ={ 2 }the vector F, is described in step{ 6.1.(1)

3 8.1.(1)

5 6.1(2)(a)

The following describes a systematic way by which a
vector F, can be obtained such that F, = E,¥ (p > i >
0) and p — n-s is factorized, for every valueof n, 1 < n
< [p/s].

If steps 5, 7 are performed, the result is that p — s is
factorized. If a vector V, whose length is d, is obtained by
performing steps 5,8, 8.3, 7, then d, — s is factorized. If
F, is now reconstructed in terms of the subvectors of V;,
the result is that p — 2s is factorized. Generally, if V; is
obtained by doing the steps 5, (8,8.3)!, 7, then by recon-
structing F, in terms of the subvectors of V; the result is
that p — (i + 1)-sis factorized.

It can be concluded that the condition stated in the

theorem is sufficient and necessary, and by this part (2)
of the theorem is proved.
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Step 13: Proof of part (3) of the theorem
131 b=np.

It has been shown that if F, = E;® for some 0 < i < p,
then p — n-s is factorized for some n. By this the validity
of the code is proved, since it is enough to require that
p — n+s should be prime.

The result that p — n-s is factorized followed from the
fact that F, consists of n subvectors D (an “all 0” vector of
length s = g — p), and the rest consists of repetition of a
subvector A whose length is at least 2. The last result
followed from the fact thatb < p — 1.

If b = p, the repeated vector A can consist of one
element. This means that it is possible to have F, = E,®
although p — n-+s is prime, provided that F, consists of
n subvectors D and p — n*s elements of value 1, where
each pair of subvectors D is separated by at least one 1
element. It follows that F, — or any cyclic shift of it —
do not have ¢ — p + 1 successive zeroes. This means that
the check for “all 0” input performed by the decoder (and
demonstrated in Fig. 1.) is never satisfied. It follows that
if b = p, the error is always detected.

132 b=p+1

The first and last elements of the error burst are p
places apart. In view of the construction of the first p
rows in the parity check matrix H, it follows that if H is
multiplied by the received erroneous message, the number
of 1 elements in the first p places of the syndrome will be
less by 2 from the corresponding number in the last g
places of the syndrome, and an uncorrectable error is
detected. Hardwarewise, no match is possible between
the content of the first p — 1 stages of R, and R,, where
the rest of the stages contain 0. (This comment refers to
Fig. 1 which describes the decoder.)

133 p+1<b<qg-p+1
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Let G be a vector of length g whose first b elements are
the error pattern and the rest of its elements are 0. The
last g elements of the syndrome consist of a cyclic shift
of G.

Referring to the description of the decoder (Fig. 1) it is
seen that in order for an error to be corrected the content
of the last ¢ — p + 1 stages of register R, is required to
be all 0 in order to correct the error. The content of R, is
a cyclic shift of G. This vector has a 1 element in its first
place and bth place wherep + 1 < b < g — p + 1. No
cyclic shift of G can have ¢ — p + 1 successive zeroes at
its end. Since one of the necessary conditions for correct-
ing the error is never met, an uncorrectable error pattern
is detected.

It can be concluded from steps 13.1 to 13.3 that if b <
max(p + 1, g — p + 1) the error is detected.

13.4 Proof of error detection probability

It is assumed here that the noise source which produces
the error burst is of such a type that all transmitted infor-
mation is lost during the interruption time. It is therefore
assumed that the error burst has an equal probability of
having any particular pattern. The probability of not de-
tecting an error is defined as the number of undetectable
patterns divided by the total number of possible patterns.

fg—-p+l<p+l<borp+l<qg-—-p+1<b
then for both cases the vector G (defined in section 13.3)
cannot have at its end ¢ — p + 1 successive zeroes. In
order for a cyclic shift of it to have this number of zeroes
at its end, the vector G must have ¢ — p + 1 successive
zeroes within the first b places. This group of zeroes can
start anywhere between the second place and the b —
(g — p + 1) place. (The first and bth elements must be
1). These zeroes have therefore less than p different places
to start with. It follows that the probability of having an
undetectable error is less than p« 25-2-(¢-7+1) /202 = py+ 903,
The proof of the theorem is thus completed.
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Table 1. Some suggested burst-correcting cyclic codes

colzr‘:csttin g (nk) Rate, Efficiency, p=b+1
ability b % %
22 (667,618) 93.4 90.2 29 23
30 (1333,1260) 94.5 84.9 43 31
40 (2173,2080) 95.7 88.2 53 41
52 (4399,4264) 96.9 785 83 53
60  (6283,6120) 974 74.8 103 61
66 (6499,6336) 97.4 82.2 97 87
72 (7519,7344) 97.7 834 103 73
82 (9379,9184) 97.9 85.1 1138 83
98  (12139,11916) 98.2 87 127 97
100 (13231,13000) 98.3 874 131 101
126 (19939,19656) 98.6 89.8 157 127

148 (29353,29008) 98.8 86.4 197 149
250 (78061,77500) 99.3 89.5 311 251

Table 2. Comparing some codes

Suggested code “Most efficient code”
b n ..
Original
k Rate, % ::lode k Rate,%

30 1,000 927 927  (121,112) 910 91
40 1,000 907 90.7  (164,153) 890 89
40 2,000 1,907 953 (290277) 1,896 94.8
50 2,000 1,865 93.2  (290277) 1870 985
50 4,000 3,865 96.6 (290277) 3,844 961
65 38,000 2,837 945  (290,277) 2,861 95.3
65 6,000 5,837 97.2  (511,499) 5,796 96.6
80 4,000 8,805 951  (290,277) 3,792 948
80 9,000 8,805 97.8 (511,499) 8,760 97.3
100 5,000 4,769 95.3  (290277) 4,740 948
100 10,000 9,769 97.86  (511,499) 9,700 97
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